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Abstract. One-,  two- a n d  three-dimensional lsing spin-glass systems with Gaussian nearest- 
neighbour couplings, J , , ,  are  compared to  their corresponding ferromagnetic systems in 
which the couplings are  taken as  l J , , l .  The  local energy minima of systems consisting of 
not more than 16 spins were studied exactly. The larger systems were studied by a Monte 
Carlo method. Both systems have an  exponentially growing number of minima. We analyse 
the energy and  magnetisation distribution across these minima. In  the ferromagnetic case 
a significant portion of the minima is only slightly magnetised. In the  spin-glass case the 
absolute value of magnetisation, when averaged over the minima, shows a universal 
behaviour. 

1. Introduction 

The presence of many metastable states, i.e. local energy minima, is the essence of 
spin-glass physics. A common perception, however, is that disordered ferromagnets 
( D F M )  are distinctively different from spin glasses ( s G ) .  For one thing, DFM are thought 
to be unfrustrated and, secondly, they are considered to possess only one energy 
minimum-the ground state. It is certainly true that the ground state of a DFM is very 
easy to specify since it simply corresponds to a complete spin alignment. With all of 
the couplings being positive there is certainly no frustration in this state: each exchange 
coupling multiplied by the spins it connects is positive. 

In  this paper we show, however, that the ground state of a DFM is but one of many 
local energy minima which are almost all frustrated. So the principal question asked 
in this paper is what really is the difference between a DFM and a SG if the absolute 
values of exchange couplings in both systems are identical. In the case of lsing spins, 
on which we focus here, the differences turn out to be more of quantity than of quality. 
This, in particular, suggests that the dynamics of the two systems should be very similar. 
This agrees with the prediction of Hertz (1983) and means that, for dynamical reasons, 
the DFM may not even get into the vicinity of its true ground state within experimental 
timescales. 

The system we shall study is described by the Hamiltonian 

where S, = il. We shall mostly be interested in the Edwards-Anderson (1975) model 
of SG. In this model the exchange couplings J ,  are Gaussian random numbers of unit 
dispersion. In the corresponding DFM model the couplings are absolute values of the 
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Gaussian numbers. A transition between such SG and DFM has recently been studied 
by Zaluska-Kotur et a1 (1987) by the Migdal-Kadanoff method. The transition is 
driven by increasing the concentration of the negative bonds. 

The case of Jy being equal to -1 with probability x, and +1 otherwise, is very 
special due to the enormous degeneracies involved. The physics of this case at x = 0.5 
(full frustration) and x = 0 is very different and it is not an object of the present studies. 

2. Number of energy minima 

A good starting point is to convince oneself that a DFM does have many local energy 
minima. The minima are defined here as states which are stable against single spin 
reversals. Figure 1 shows three plaquettes, or rings, with the exchange couplings 
arranged so that the weaker couplings alternate with the stronger ones. In figure l ( a )  
all of the Jy are positive. This is a prototype DFM. By scanning through its 16 possible 
states we easily conclude that two of these (plus their inverted images) are such that 
turning any individual spin upside-down requires energy. These two stable energy 
minima are shown in figure 1 together with the corresponding energy and magnetisation 
per spin, M. The true ground state is fully aligned. The higher minimum is not 
magnetised and it gives rise to two frustrated bonds. These are the two weaker bonds. 

Figures l ( b )  and (c )  show prototype SG in which two non-trivial energy minima 
also appear. In  the case of ( b )  one bond is negative. Here, both minima frustrate a 
single bond each. In the case of ( c )  two bonds are negative (note that ( J )  =0)  but the 

( c  I 

0.7 

0.3 I Y 

111 
-0 3 9-J 

M : 0 . 5  
€2-1.4 

Figure I .  A ring of four spins with the exchange couplings as indicated. In ( a )  all the 
couplings are positive, in ( b )  one is negative, in ( c )  two are negative. The corresponding 
local energy minima are shown to the right. A broken line signifies a frustrated bond. 
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true ground state is not frustrated at all. It is the excited minimum in which two bonds 
are frustrated. In none of these states does M disappear. 

A ring of four spins is nothing else but a small one-dimensional system with periodic 
boundary conditions. An interesting question to ask is how does the average number 
of stable energy minima ( n ) ,  grow with the number, N,  of spins. In order to answer 
this question we have performed an exact numerical analysis of N 16 chains with 
periodic boundary conditions. For any given sample we have scanned through its spin 
states and selected all those which are stable against single spin reversals. Only 
non-trivial energy minima have been counted, i.e. an inverted minimum has not been 
considered as a new minimum. For N = 6 and 8 we have studied 800 samples, both 
in the DFM and SG case. For N = 10, 12, 14 and 16, we have searched 600 different 
samples for minima. 

Even though the eigenenergies of each DFM sample differ from those of the 
corresponding SG system, their number of minima, and hence ( n ) ,  has been found to 
be precisely the same. This common dependence of ( n )  on N is shown in figure 2. 
The statistical scatter is less than the size of the data points. The increase in ( n )  is 
exponential: 

( n )  = no eN’a (2) 

where no = 0.4993 and a = 4.1398. Since e”“  = 4/ 7~ this result agrees exactly with the 
(4/ T ) ~  law derived by Derrida and Gardner (1986) under assumptions of ( a )  symmetric 
probability distribution for J,, (not satisfied by DFM) and ( b )  large systems. This law, 
then, is more general. 

1 4 6 8 9 10 12 14 16 

N 

Figure 2. Average number of non-trivial local energy minima plotted against the number 
of spins. The full curve corresponds to a two-dimensional SG with the Gaussian couplings. 
The broken curve is for the two-dimensional DFM. The dotted curve is for both the SG 
and DFM one-dimensional systems. All of the curves are fits to equation (2 )  with the 
parameters as described in the text. 
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In  the case of two-dimensional systems, DFM and sc begin to differ, as also shown 
in  figure 2. The sizes considered are 3 x 3 (i.e. N = 9),  3 x 4 and 4 x 4 and the numbers 
of samples are 800, 800 and 600 respectively. Again ( n )  grows exponentially in both 
models. In the case of SG the growth can be described by equation (2) in which 
n,, = 0.5 1 and a = 4.61. In the case of DFM the growth is slightly weaker: no = 0.37 and 
a =4.50. Note that a is somewhat larger in two-dimensional systems than in one- 
dimensional systems. The reason is that in two-dimensional systems there are more 
conditions to be satisfied for a state to become a stable energy minimum. It follows 
that in three-dimensional systems ( n )  should grow with N still weaker. Unfortunately 
studying reasonably sized three-dimensional systems was beyond our reach. Note that 
(n) as a function of the linear size, L = of the system should grow stronger and 
stronger with the dimensionality. This is because the number of states grows extremely 
fast on increasing d for a given L. 

Another way to characterise the number of the energy minima is to specify (In n )  = 
a + N / b .  This quantity, as opposed to ( n ) ,  is an  extensive one. For the one-dimensional 
systems we obtain a = -0.6858 and b = 4.3234. For the two-dimensional systems we 
obtain a = -1.1422, b = 4.4307 in the DFM case and a = 0.7922, b = 4.5413 in the SG 

case. The conclusions remain qualitatively the same. 

3. Density of metastable states 

A next question to ask is what the energy distribution of the local energy minima is. 
The distribution of such states will be denoted by n(&), where F = E /  N measures the 
energy per spin. Small systems can be studied exactly. The bigger ones, however, are 
amenable to Monte Carlo methods and then only the ‘most important’ states are seen 
of all the relevant phase space. Our numerical procedure was as follows. We took at 
least 200 samples and in each a random spin configuration was selected. Then we set 
the temperature T to be equal to 2.0. After five Monte Carlo steps per spin T was 
reduced to 1.5. After the next five Monte Carlo steps per spin, T became 1.0, then 
similarly 0.5 and finally 0. At that stage the system underwent an energy minimisation 
until no further decrease in energy was possible. The procedure was repeated at least 
100 times for each sample. Changing five Monte Carlo steps per spin into 100 was 
checked and found not to affect the results in any significant manner. 

Figure 3 shows results obtained for one-dimensional systems. The systems with 
N = 8 and 16 were studied exactly and with N = 100 by the Monte Carlo method. In 
each case the histograms for SG and DFM are almost the same and are both symmetric. 
The width of the distribution shrinks with N logarithmically. 

Figure 4 shows exact results on n ( ~ )  for the 4 x  4 systems and Monte Carlo results 
for the 15 x 15 systems. The metastable states of a SG are distributed symmetrically 
whereas those of a D F M  form a low-energy tail, indicating less frustration. 

Similar features are seen in  figure 5 showing Monte Carlo results obtained on 
3 x 3 ~ 3  and 6 x 6 ~ 6  systems. As opposed to one- and two-dimensional data, the 
distribution of energy minima in a DFM is significantly broader than in a corresponding 
SG and the low-energy tail is much more pronounced. 

Both in two- and three-dimensional systems the distributions corresponding to DFM 
have their centres of mass, as marked by arrows, shifted towards lower energies 
compared to the SG distributions (in the case of 4 x 4  systems the shift is very small). 
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Figure 3. The density of local energy minima plotted 
against energy per spin in the one-dimensional sys- 
tems. The full lines refer to the DFM and  the broken 
lines to the SG. The vertical lines comprise a his- 
togram corresponding to exact results obtained for 
the N = 16 systems. The data  have been obtained 
for the N = 100 systems by the Monte Carlo method. 
The energy per spin intervals are  equal to 0.06. The 
arrows indicate an  average F .  
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Figure 4. Same as  figure 3 but for two-dimensional 
systems. The exact results (vertical lines) are for 
N = 4 x 4  and  Monte Carlo results for N = 15 x 15. 
In the I S  x 15 case the full arrow indicates ( E )  in the 
DFM case and  a broken one in the SG case. In the  
4 x 4  case the two arrows coincide. 

The average energy per spin presumably saturates at a constant value on increasing 
N. In  the one-dimensional case ( E )  is almost the same for each N studied. 

So far we have been concerned with the average distributions of the metastable 
states. Such distributions, or more precisely distributions of the energy barriers, may 
be of interest when studying spectra of relaxation times. The low-temperature ther- 
modynamics, however, is determined by the average logaritnm of the density of 
metastable states. This ‘residual entropy’ has been studied by Bray and Moore (1981) 
and Ettelaie and Moore (1985). The latter paper contains a detailed discussion of the 
one-dimensional SG.  

Our Monte Carlo results for (In H ( E ) )  are shown in figure 6. In  order to make a 
better comparison between DFM and s c ,  a distribution of n in each sample is first 
normalised to unity by dividing it by the total number of minima found in that sample. 
The states are allocated to bins according to their energy per spin and the bin width 
is equal to 0.1. Logarithms of the occupation numbers obtained in this manner are 
then averaged over 200 samples. From figure 6 we can see that, both in the two- and 
three-dimensional cases, the distribution of In n( E )  is much broader for the DFM systems 
than for the SG ones. Furthermore the states from the low-energy tail carry much more 
thermodynamic weight in the DFM than in the SG. 
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E 

Figure5 The density of metastable states plotted against the energy per spin in the 
three-dimensional systems. The full lines refer to the DFM case and the broken ones to 
the SG. These are Monte Carlo data on 3 x 3 x 3 and 6 x 6 x 6 systems as indicated in the 
figure. The energy per spin intervals are equal to 0.1. The full (broken) arrow indicates 
( E )  in the DFM ( S G )  case. 

4. Magnetisation 

One intuitively expects DFM to be more magnetised than the corresponding S G .  We 
find that this is indeed the case. However, the bulk of the ferromagnetic metastable 
states is magnetised very little. 

Consider the one-dimensional data first. These are shown in figure 7 .  The data 
for N = 16 are exact and for N = 100 they come from the Monte Carlo calculation. 
The N = 16 systems allow for nine different values of IMI but there is no metastable 
state with 1 MI = 3 = 0.875. In  the DFM case there is always a fully magnetised minimum 
in each sample. The most probable state, both in DFM and SG, corresponds to 
M =& = 0.125. However the DFM magnetisations are spread more evenly across the 
allowed values. 

For N = 100, IMI occurs most frequently between 0 and 0.1. The fully magnetised 
state has never been reached. The average magnetisation is reduced for both SG and 
DFM. Still, however, DFM states are more magnetised. 

Derrida and Gardner (1986) show that in the one-dimensional SG case there should 
be no metastable states above IMI = 0.446 042. Our Monte Carlo data do not contradict 
this statement. However, our results for N = 16 do yield several states above the limit 
set by Derrida and Gardner. Perhaps the constraint on I MI holds only in the thermody- 
namic limit. 
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Figure6. Distributions of -In n ( ~ )  where ti(&) is the number of minima having energies 
per spin between E-0.05 and ~ + 0 . 0 5 ,  for N = 1 5 x 1 5  a n d  N = 6 x 6 x 6  systems. n ( ~ )  is 
normalised to unity in each sample.  The full lines correspond to UFM and  the broken 
ones to S G .  

Figure 8 shows IMI as found for the two-dimensional systems. The 4 x 4  systems 
were studied exactly and the 15x 15 systems by the Monte Carlo method. The 
magnetisation behaves very similarly to the one-dimensional case. Even the average 
lA4 almost coincides at  the two common values of N = 16, both for DFM and SG. 

Figure 9 corresponds to the three-dimensional systems. Both sizes, 3 x 3 x 3 and 
6 x 6 ~ 6 ,  were studied by the Monte Carlo method. The minima of the three- 
dimensional DFM samples are significantly more magnetised than those of the SG 

samples. They are more uniformly spread out and the vicinity of IMI = 1 is no longer 
avoided. Nevertheless the minima of low I M I are most probable. As expected, the SG 

minima are increasingly less magnetised when N is enlarged. 
Figure 10 compares IMI averaged over all metastable states for various sizes and 

dimensionalities regardless of the method of calculation employed. It is interesting to 
notice that ( 1  M 1)  of SG systems decreases logarithmically with N and seems to depend 
exclusively on N. The one-, two- and three-dimensional data points lie essentially on 
the same curve. Furthermore, the distribution of the exchange couplings appears not 
to matter either. We have investigated exactly the N = 10 and N = 16 one-dimensional 
systems with a rectangular distribution of J,, and found that the results also fit the 
curve obtained for the Gaussian couplings. 

The DFM systems are much more sensitive to the geometry and to the details of 
the distribution of the couplings. The one-dimensional systems yield a line above the 
SG one and also suggest a l / l n  N decay of (IMI). The one-dimensional systems with 
the rectangular distribution of Ji, (not shown in the figure) give rise to a still different 
curve. 
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N=16 

0 0 5  
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1 0  

Figure7. Distribution of the absolute value of magnetisation per spin across the local 
energy minima of one-dimensional systems. The full lines correspond to D F M  and the 
broken ones to S C .  The figure shows exact results for N = 16 systems and Monte Carlo 
results for N = 100. 

The statistics of 20 000 minima is insufficient to determine trends of behaviour of 
(IMI) for two- and three-dimensional DFM with certainty. Large widths in the distribu- 
tion of IMI make it difficult to determine the precise average value of (MI-the width 
is of the order of the average. It seems that the two- and three-dimensional DFM yield 
two separate curves above the one-dimensional results. The decay of (IMI) in three- 
dimensional samples appears to be very slow. In fact, a possibility of saturation at a 
constant value cannot be ruled out if a sufficient size is reached. 

Our main conclusion is that disordered Ising ferromagnets are, in many respects, 
very much like spin glasses: they have exponentially growing numbers of local energy 
minima. A significant portion of these minima are only weakly magnetised. The 
three-dimensional systems distinguish most tangibly between SG and DFM in quantita- 
tive measures. The one-dimensional DFM and SG systems with the same IJ,I have 
identical distributions of the energy minima and they differ merely by the properties 
of the magnetisation. 

The lower critical dimensionality of DFM Ising systems, however, is different from 
that of corresponding spin glasses and remains equal to 1, i.e. as in the case of uniform 
couplings. One can be convinced of this by testing the sensitivity of the system to 
changes in the boundary conditions (see, e.g., Binder and Young 1986, Banavar and 
Cieplak 1982). Unlike the spin glasses, the lowest energy of DFM is always realised 
with the periodic boundary conditions and a twist in ‘wall potentials’ remains localised 



Metastable states in disordered ferromagnets 5665 

I I 

0 50 0 75 100 

0 0 5  1 0  
IMI 

Figure 8. Same as figure 7 but for two-dimensional 
systems, showing exact results for N = 4 x 4 systems 
and Monte Carlo results for 15 x 15 systems. 
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Figure 9. Same as figure 7 but for three-dimensional 
systems, showing the exact results for N = 3 x 3 x 3 
and N = 6 x 6 x 6 systems. 
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Figure 10. Average absolute value of magnetisation plotted against In N for one- 
dimensional samples (x,  joined by the full curve for DFM data and by the lower broken 
curve for SG data), for two-dimensional samples (0, DFM; 0, S G )  and for three-dimensional 
samples (m, DFM; 0, sG).  There are two data points corresponding to the two-dimensional 
4 x 4  DFM; the upper point was obtained by the Monte Carlo procedure and the lower 
one through the exact enumeration of states. The upper broken line organises the three- 
dimensional DFM points. 
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on a weakest bond. The Heisenberg DFM also seem to have their lower critical 
dimensionality not modified by the disorder (Banavar et a /  1982). In this case this 
dimensionality is equal to 2 .  

It would be interesting to compare isotropic and  anisotropic Heisenberg ferromag- 
netic systems to their corresponding spin glasses. Furthermore, it would be interesting 
to find out whether the universal behaviour of ( IMI)  found in the SG Ising systems is 
still present in the Heisenberg spin glasses. 

Acknowledgments 

The authors acknowledge the support of the Polish Ministry of Science and Higher 
Education under project MRI7. A part of this work was undertaken when one of the 
authors (TRG) was visiting at the Departement de  Physique, UniversitC de  MontrCal, 
Montrtal, Canada. It is a pleasure to thank J Brebner and"R Cochrane for the hospitality 
they extended to him. MC also appreciates discussions with J Jaeckle. 

References 

Banavar J R and Cieplak M 1982 Phys. Reo. Leu. 48 832 
Banavar J R, Cieplak M and Cieplak M 2 1982 Phyr. Rec. B 26 2782 
Binder K and Young A P 1986 Reo. Mod. Ph,ys. 58 801 
Bray A J and Moore M A 1981 J.  Phys. C: Solid Stare Phys. 14 1313 
Derrida B and Gardner E 1986 J.  Physique 47 959 
Edwards S F and Anderson P W 1975 J.  Phys. F: Mer. Phys. 5 965 
Ettelaie R and Moore M A 1985 J .  Physique 46 L893 
Hertz J 1983 Phys. Rev. Lett. 51 1880 
Zaluska-Kotur M A, Cieplak M and Cieplak P 1987 J.  Phys. C: Solid Store Phys. 20 3741 


